
Going Deeper with Deep Knowledge Tracing
Xiaolu Xiong, Siyuan Zhao, Eric G.

Van Inwegen, Joseph E. Beck
Worcester Polytechnic Institute

100 Institute Rd
Worcester, MA 01609

508-831-5000

{xxiong, szhao, egvaninwegen,
josephbeck}@wpi.edu

ABSTRACT

Over the last couple of decades, there have been a large variety of

approaches towards modeling student knowledge within

intelligent tutoring systems. With the booming development of

deep learning and large-scale artificial neural networks, there have

been empirical successes in a number of machine learning and

data mining applications, including student knowledge modeling.

Deep Knowledge Tracing (DKT), a pioneer algorithm that utilizes

recurrent neural networks to model student learning, reports

substantial improvements in prediction performance. To help the

EDM community better understand the promising techniques of

deep learning, we examine DKT alongside two well-studied

models for knowledge modeling, PFA and BKT. In addition to

sharing a primer on the internal computational structures of DKT,

we also report on potential issues that arise from data formatting.

We take steps to reproduce the experiments of Deep Knowledge

Tracing by implementing a DKT algorithm using Google’s

TensorFlow framework; we also reproduce similar results on new

datasets. We determine that the DKT findings don't hold an

overall edge when compared to the PFA model, when applied to

properly prepared datasets that are limited to main (i.e. non-

scaffolding) questions. More importantly, during the investigation

of DKT, we not only discovered a data quality issue in a public

available data set, but we also detected a vulnerability of DKT at

how it handles multiple skill sequences.

Keywords

Knowledge tracing, deep learning, recurrent neural networks,

student modeling, performance factors analysis, data quality

1. INTRODUCTION
Deep Learning (DL) is an emerging approach within the machine

learning research community. A series of deep learning algorithms

have been proposed in recent years to move machine learning

systems toward the discovery of multiple levels of representation

and they already had important empirical successes in a number of

traditional AI applications such as computer vision and natural

language processing [8]. Much more recently, Google’s deep

learning networks [7] beat a top human player at the game of Go.

Most research in deep learning (e.g. Google’s deep learning

algorithm) has been focused on the studies of artificial neural

networks.

Deep knowledge tracing (DKT), the recent adoption of recurrent

neural nets (RNNs) in the area of educational data mining,

achieved dramatic improvement over well-known Bayesian

Knowledge Tracing models (BKT) and the results of it have been

demonstrated to be able to discover the latent structure in skill

concepts and can be used for curriculum optimization [1].

Driven by both noble goals (testing the reproducibility of

scientific findings) and some selfish ones (how did they do so

much better at predicting student performance?!), we set out to

take the theories, algorithms, and code from the DKT paper and

apply them ourselves to the same data and more data sets. As to

the goal of reproducing the findings, we were motivated by

studies discussing the importance of reproducibility [5]. In

addition to applying DKT to the same data, we also tested the

algorithm on a different ASSISTments dataset (which covers data

in 2014-2015 school year), as well as the one of data sets from

KDD Cup 2010. In our experiments with the original DKT

algorithm, we uncovered three aspects of the ASSISTments 2009-

2010 data set that, when accounted for, drastically reduce the

effectiveness of the DKT algorithm. These can broadly be

summarized as 1). an error in reporting the data (wherein rows of

data were randomly duplicated). 2). an inconsistency of skill

tagging, and 3). the use of information ignored by PFA and BKT.

We will discuss these three inconsistencies and their impacts on

the prediction accuracies in section 3.

2. DEEP KNOWLEDGE TRACING AND

OTHER STUDENT MODELING

TECHNIQUES
When describing neural networks, the use of 'deep' conventionally

refers to the use of multiple processing layers; the 'Deep' in DKT

refers to the recurrent structure of the network and the 'depth' of

information over time. This family of neural nets represents latent

knowledge state, along with its temporal dynamics, using large

vectors of artificial neurons, and allows the latent variable

representation of student knowledge to be learned from data rather

than hard-coded.

Typical RNNs suffer from the now famous problems of vanishing

and exploding gradients, which are inherent to deep networks.

Figure 1 shows an unrolled RNN; there are loops at hidden layers,

allowing information to be retained; this is the ‘depth’ of an RNN.

When building a deep neural net, the standard activation functions

, and cumulative backpropagation error signals either shrink

rapidly or grow out of bounds. i.e., they either decay or grow

exponentially (‘vanish’ or ‘explode’). Long short-term memory

(LSTM) model [14] is introduced to deal with the vanishing

gradient problem; it also achieves remarkable results on many

previously un-learnable tasks. LSTM, a variation of recurrent

neural networks, contains LSTM units in addition to regular RNN

units. LSTM units have two unique gates: forget and input gates

Proceedings of the 9th International Conference on Educational Data Mining 545

to determine when to forget previous information, and which

current information is important to remember.

Figure 1. An unrolled Recurrent Neural Network (RNN)

The idea behind LSTM is simple. Some of the units are called

constant error carousels (CEC). Each CEC uses an activation

function f, the identity function, and has a connection to itself

with fixed weight of 1.0. Due to f’s constant derivative of 1.0,

errors backpropagated through a CEC cannot vanish or explode

but stay the same magnitude. CECs are connected to several

nonlinear adaptive units needed for learning nonlinear behavior.

Weight changes of these units often profit from error signals,

which propagate far back in time through CECs. CECs are the

main reason why LSTM nets can learn to discover the importance

of (memorize) events that happened thousands of discrete time

steps ago while previous RNNs routinely fail in cases of minimal

time lags of 10 steps. LSTM learns to solve many previously un-

learnable DL tasks and clearly outperformed previous RNNs on

tasks both in terms of reliability and speed [1].

In the DKT algorithm, at any time step, the input to RNNs is the

student performance on a single problem of the skill that the

student is currently working on. Since RNNs only accept fixed

length of vectors as the input, we used one-hot encoding to

convert student performance into fixed length of vectors whose all

elements are 0s except for a single 1. The single 1 in the vector

indicates two things: which skill was answered and if the skill was

answered correctly. This data presentation draws a clear

distinction between DKT and other student modeling methods,

such as Bayesian Knowledge Tracing and Performance Factor

Analysis.

The Bayesian Knowledge Tracing (BKT) model [10] is a 2-state

dynamic Bayesian network where student performance is the

observed variable and student knowledge is the latent data. The

model takes student performances and uses them to estimate the

student level of knowledge on a given skill. The standard BKT

model is defined by four parameters: initial knowledge and

learning rate (learning parameters) and slip and guess (mediating

parameters). The two learning parameters can be considered as

the likelihood the student knows the skill before he even starts on

an assignment (initial knowledge, K0) and the probability a

student will acquire a skill as a result of an opportunity to practice

it (learning rate). The guess parameter represents the fact that a

student may sometimes generate a correct response in spite of not

knowing the correct skill. The slip parameter acknowledges that

even students who understand a skill can make an occasional

mistake. Guess and slip can be considered analogous to false

positive and false negative. BKT typically uses the Expectation

Maximization algorithm to estimate these four parameters from

training data. Based on the estimated knowledge, student

performance at a particular practice opportunity can be calculated

except the very first one, which only apples the value of K0.

Skills vary in difficulties and amount of practices needed to

master, so values for four BKT parameters are skill dependent.

This lead to one major weakness of BKT [11]: it lacks the ability

to handle multi-skill questions since it works by looking at the

historical observation of a skill and cannot accommodate all skills

simultaneously. One simple workaround is treating the multiple

skill combination as a new joint skill and estimate a set of

parameters for this new skill. Another common solution to this

issue is to associate the performance on multiple skill questions

with all required skills, by listing the performance sequence

repeatedly [12]. This makes the model see this piece of evidence

multiple times for each one of required skills. As a result, a

multiple skill question is multiple single skill questions.

Another popular student modeling approach is the Performance

Factors Analysis Model (PFA) [9]. PFA is a variant of learning

decomposition, based on a reconfiguration of Learning Factor

Analysis. Unlike, BKT, it has the ability to handle multiple skill

questions. Briefly speaking, it uses the form of the standard

logistic regression model with the student performance as the

dependent variable. It reconfigures LFA (Learning factors

analysis) [13] on its independent variables, by dropping the

student variable and replaces the skill variable with question

identity. This model estimates parameters for each item’s

difficulty and also two parameters for each skill reflecting the

effects of the prior correct and incorrect responses achieved for

that skill. Previous work that compares KT and PFA have shown

that PFA to be the superior one [11]. One reason is the richer

feature set that PFA can utilize and the fact that learning

decomposition models are ensured to reach global maxima while

the typical fitting approach of BKT is no guarantee of finding a

global, rather than a local maximum.

Beside the theoretical comparison of DKT, BKT, and PFA, we

can also compare them visually by looking at the differences

between them in terms of inputs data. Consider a simple scenario

that a student answers two questions from two skills each, Tables

1-3 compare different training data formats for these three

modeling methods under that same scenario of student responses.

Table 1. An example of BKT’s training data

Model ID Skill ID Response Sequence

1 A 1,0

2 B 0,1

Table 2. An example of PFA’s training data

Index

ID

Skill

ID

Prior

Correct

Prior

Incorrect

Difficulty Correct

1 A 0 0 0.7 1

2 A 1 0 0.75 0

3 B 0 0 0.6 0

4 B 0 1 0.65 1

Proceedings of the 9th International Conference on Educational Data Mining 546

Table 3. An example of DKT’s training data

Index ID One-hot encoding

1 1,0,0,0

2 0,0,1,0

3 0,0,0,1

4 0,1,0,0

3. METHODOLOGY AND DATA SETS

3.1 Implementation of Deep Knowledge

Tracing in Tensorflow
The original version of DKT (Lua DKT1) was implemented in Lua

scripting language using Torch framework and its source code has

been released to the public. In order to have a comprehensive

understanding of the DKT model, we decided to replicate and

implement DKT model in Python and utilize Google’s

TensorFlow API [3] to help us with building neural networks.

TensorFlow is Google Brain’s second generation machine

learning interface; it is flexible and can be used to express a wide

variety of algorithms.

Our implementation of DKT in TensorFlow (TensorFlow DKT2)

can be described as a directed graph, which is composed of a set

of nodes. The graph represents a data flow computation, with

extensions for allowing certain nodes to maintain and update

persistent state and for branching and looking control, this is

crucial for allowing RNN nodes to work on sequential data. In the

directed graph, each node has zero or more inputs and zero or

more outputs and represents the instantiation of an operation. An

operation represents an abstract computation. In our

implementation of DKT model, we adapted the loss function of

the original DKT algorithm. It has 200 fully-connected hidden

nodes in the hidden layer. To speed up the training process, we

used mini-batch stochastic gradient descent to minimize the loss

function. The batch size for our implementation is 100. For one

batch, we randomly select data from 100 students in our training

data. After the batch finishes training, 100 students in the batch

are removed from the training data. We continue to train the

model on next batch until all batches are done. Just as in the

original Lua implementation, Dropout [4] was also applied to the

hidden layer to avoid over-fitting.

4. DATA SETS

4.1 ASSISTments 2009-2010 Data Set
The original DKT paper conducted one of three of experiments

using the ASSISTments 2009-2010 skill builder data set [16].

This data set was gathered from ASSISTments’ skill builder

problem sets, in which a student achieves mastery by working on

similar (often isomorphic) questions until they can correctly

answer n right in a row (where n is usually 3). After mastery,

students do not commonly rework the same skill. This dataset

contains 525,535 rows of student responses; there are 4,217

student ID's and 124 skills. Lua DKT achieved an AUC of 0.86

1 https://github.com/chrispiech/DeepKnowledgeTracing

2 https://github.com/siyuanzhao/2016-EDM

and noticeably outperformed BKT (AUC = 0.67) on this data set.

However, during our investigation on the DKT source code and

application, we believe we discovered three issues that have

unintentionally inflated the performance of Lua DKT. These

issues are:

4.1.1 Duplicated records
To our surprise and dismay, we found that the ASSISTments

2009-2010 data set has a serious issue of quality: large chunks of

records are duplications that should not be there for any reason

(e.g. see records of order id 36369610). These duplicated rows

have the same information but only differ on the “opportunity”

and “opportunity_original”; these two features record the number

of opportunities a student has practiced on a skill and the number

of practices on main problems of a skill respectively. It is

impossible to have more than one ‘opportunity’ count for a single

order id. This is definitely an error in the data set and these

duplicated records should not be used in any analysis or modeling

studies. We counted there are 123,778 rows of duplications out of

525,535 in the data set (23.6%). The existence of duplicated data

is an avoidable oversight and ASSISTments team has

acknowledged this error on their website. All new experiments in

this work and following discussions exclude data of these

duplications.

4.1.2 Mixing main problems with scaffolding

problems
A mastery learning problem set normally contains over a hundred

of main problems, and each main problem may have multiple

associated scaffolding problems. Scaffolding problems were

designed to help students acquire an integrated set of skills

through processes of observations and guided practice; they are

usually tagged with different skills and have different designs

from the main problems. Because of the difference in usage,

scaffolding questions should not be treated as the same as main

problems. Student modeling methods such as BKT and PFA

exclude scaffolding features. The experiment conducted by Lua

DKT did not filter out scaffolding problems. This means that Lua

DKT had the advantage of additional information; thus, the

prediction results cannot be compared fairly with BKT. There are

73,466 rows of records of scaffolding problems.

4.1.3 Repeated response sequences with different

skill tagging (Duplication by skill tag)
The 2009-2010 skill builder dataset was created as a subset of the

2009-2010 full dataset. The full dataset from 2009-2010 includes

student work from both skill builder assignments (where a student

works until a mastery threshold is reached) and more traditional

assignments (where a student has a fixed number of problems).

Any problem (or assignment) can be tagged with any number of

skill tags. Typically, problems have just one skill tag; they seldom

are tagged with two skills; they are very rarely tagged with three

or more. Depending on the design of the content creator, a

problem set may have multiple skill tags; many assignments -

especially skill builders - will have the same skill tag for all

problems. When the full dataset was decomposed into only

mastery style assignments, the problems, and assignments that

were tagged with multiple skills were included with a single tag,

but repeated for each skill. This means that the sequence of action

logs from one student working on one assignment was now

repeated once per skill. For models such as RNNs that operate

over sequences of vectors and memory on the entire history of

Proceedings of the 9th International Conference on Educational Data Mining 547

previous inputs, the issue of duplicated sequences is going to add

additional weight onto the duplicated information; this will have

undesired effects on RNN models.

For an example, suppose we have a hypothetical scenario that a

student answers two problems which have been tagged with skill

“A” and “B”; he answers first one correctly and the next one

incorrectly. Table 4 shows the data set where responses have been

repeated on skill “A” and “B”. This format of data can be used in

BKT models since BKT can build two models for skill “A” and

“B” separately. When applying this sequential data set to DKT,

we believe DKT can recognize the pattern when a problem tagged

with skill “B” follows a problem tagged with “A”; the skill “B”

problem has an extremely high chance to repeat skill “A”

problem’s response correctness. Note that skill ID can be mapped

to skill names, but the order of skill ID is completely arbitrary.

Table 4. An example of repeated multiple-skill sequence

Index ID Skill ID Problem ID Correctness

1 A 3 1

1 B 3 1

2 A 4 0

2 B 4 0

One approach to change the way of how multiple-skill problems

are handled is to simply use the combination of skills as a new

joint skill. Table 5 shows the data set which uses a joint skill of A

and B. In this case, DKT no longer has access to repeated

information. PFA and BKT can also adapt this format of data too.

Table 5. An example of joint skills on multiple-skill problems

Index ID Skill ID Problem ID Correctness

1 A, B 3 1

2 A, B 4 0

Table 6. Three variants of ASSISTments 2009-2010 Data set

 09-10 (a) 09-10 (b) 09-10 (c)

Has

duplicated

records

No

No

No

Has

scaffolding

problems

Yes

No

No

Repeated

multiple-skill

sequences

Yes

Yes

No

Joint skills

from

multiple-skill

No

No

Yes

In order to understand the impact of having scaffolding problems

and two approaches to dealing with multiple-skill problems, we

generate three different data sets (namely 09-10 (a), 09-10 (b), 09-

10 (c)) derivate from the ASSISTments 2009-1010 data set, as

summarized in Table 6.

4.2 ASSISTments 2014-2015 Data Set
Even without the issue of duplicate rows, 2009-2010 skill builder

set has lost its timeliness and certainly cannot represent the latest

student data in an intelligent tutoring system. So we gathered

another data set that covers 2014-2015 school years’ student

response records [16]. In this experiment, we randomly selected

100 skills from this year’s data records. This data set contains

707,944 rows of records; each record represents a response to a

main problem in a mastery learning problem set. Each problem set

has only one associated skill and we take caution to make sure

there is no duplicated row in this data set. We suspect this new

data set contains different information that covers student learning

patterns, item difficulties and skill dependencies.

4.3 KDD Cup 2010 Data Set
Our last data set comes from the Cognitive Algebra Tutor 2005-

2006 Algebra system [6]. This data was provided as a

development dataset in the KDD Cup 2010 competition. Although

both ASSISTments and Cognitive Algebra Tutor involve using

mathematics skills to solve problems, they are actually rather

different from each other. ASSISTments serves primarily as

computer-assisted practice for students’ nightly homework and

review lessons while the Cognitive Tutor is part of an integrated

curriculum and has more support for learners during the problem-

solving process. Another difference in terms of content structure

is that the Cognitive Tutor presents a problem to a student that

consists of questions (also called steps) of many skills. The

Cognitive Tutor uses Knowledge Tracing to determine when a

student has mastered a skill. A problem in the tutor can consist of

questions of different skills, once a student has mastered a skill, as

determined by KT, the student no longer needs to answer

questions of that skill within a problem but must answer the other

questions which are associated with the un-mastered skills. The

number of skills in this dataset is substantially larger than the

ASSISTments dataset [15]. One issue of using KDD data on PFA

is how to estimate item difficulty feature. In this work, we use a

concatenation of problem name and step name. However many

such pairs are only attempted by 1 student and the difficulty

values of these items are either 1.0 or 0.0, leading to both over-

fitting and data leakage. To fix that, we replace difficulty values of

these items with skills’ difficulty information. Filtering out rows

with missing values resulting in 607,026 rows of data with

students responded correctly at 75.5% of the time. This KDD data

set has 574 students worked on 436 skills in mathematics. The

complete statistic information of five data sets can be found in

Table 7.

Table 7. Data set statistics

 # records # Students # Skills

09-10 (a) 401,757 4,217 124

09-10 (b) 328,292 4,217 124

09-10 (c) 275,459 4,217 146

14-15 707,944 19,457 100

KDD 607,026 574 436

Proceedings of the 9th International Conference on Educational Data Mining 548

5. RESULTS
Student performance predictions made by each model are

tabulated and the accuracy was evaluated in terms of Area Under

Curve (AUC) and the square of Pearson correlation (r2). AUC and

r2 provide robust metrics for evaluation predictions where the

value being predicted is either a 0 or 1 also represents different

information on modeling performance. An AUC of 0.50 always

represents the scored achievable by random chance. A higher

AUC score represents higher accuracy. r2 is the square of Pearson

correlation coefficient between the observed and predicted values

of dependent variable. In the case of r2, it is normalized relative to

the variance in the data set and it is not directly a measure of how

good the modeled values are, but rather a way of measuring the

proportion of variance we can explain using one or more

variables. r2 is similar to root mean squared error (RMSE) but is

more interpretable. For example, it is unclear whether an RMSE

of 0.3 is good or bad without knowing more about the data set.

However, an r2 of 0.8 indicates the model accounts for most of

the variability in the data set. Neither AUC nor r2 method is a

perfect evaluation metric, but, when combined, they account for

different aspects of a model and provide us a basis for evaluating

our models.

Experiments on every data set have been 5-fold student level

cross-validated and all parameters are learned from training data.

We used EM to train BKT and the limit of iteration was set to

200. Besides the number of hidden nodes and the size of mini-

batch parameters we have discussed, we set the number of epochs

of DKT to 100.

The cross-validated model predictions results are shown in Table

8 and Table 9. As can be seen, DKT clearly outperforms BKT on

all data sets, but the results are no longer overwhelmingly in favor

of DKT (both implementations). Note that Lua DKT

implementation which we can access uses regular RNN nodes;

TensorFlow DKT uses LSTM nodes.

Table 8. AUC results

 Torch

DKT

TensorFlow

DKT

PFA BKT

09-10 (a) 0.79 0.81 0.70 0.60

09-10 (b) 0.79 0.82 0.73 0.63

09-10 (c) 0.73 0.75 0.73 0.63

14-15 0.70 0.70 0.69 0.64

KDD 0.79 0.79 0.71 0.62

Table 9. r2 results

 Lua DKT TensorFlow

DKT

PFA BKT

09-10 (a) 0.22 0.29 0.11 0.04

09-10 (b) 0.22 0.31 0.14 0.07

09-10 (c) 0.14 0.18 0.14 0.07

14-15 0.10 0.10 0.09 0.06

KDD 0.21 0.21 0.10 0.05

On the ASSISTments data sets, average DKT prediction

performance across two implementations is better than PFA and it

is not affected by removing scaffolding, as we change dataset

from 09-10 (a) to 09-10 (b). On the other hand, PFA’s

performance increases from 0.70 to 073 in AUC and 0.11 to 0.14

in r2 (p ≤ 0.05), we believe that removing scaffolding helps

reducing noise from data and provides PFA with a dataset with

lower variance. When we switch to dataset 09-10 (c) where

multiple skills were combined into joint skills, the performance of

DKT suffers a noticeable hit, average AUC and average r2 drop

from 0.81 to 0.74 and from 0.30 to 0.18 respectively. This

observation confirms our suspicion on repeated response

sequence inflating the performance of DKT models. On the 09-10

(c) dataset and 14-15 dataset where no repeated response

sequences and scaffolding problems, we notice that PFA performs

as well as DKT.

A deeper way of looking at the impact of repeated response

sequences on data set 09-10 (b) is splitting the prediction results

into two, the predictions of leading records and repeated data

points. We see that predictions on repeated data points (e.g. skill

“B” problems in Table 4) have nearly perfect performance metrics

(AUC = 0.97, r2 = 0.74). On the other hand, the leading records

(e.g. skill “A” problems in Table 4) have much lower prediction

results (AUC = 0.77, r2 = 0.23). That said, we also notice these

numbers are still higher than 09-10 (c)’s results, which uses joint

skill tags to avoid repeated sequences. One can explain this as

making DKT to model skills individually can cause data

duplications but it also can have benefits on building skill

dependencies over time and use such information to make better

predictions.

On the KDD dataset, the performance results of two DKT

implementations are definitely better than both BKT and PFA (p

≤ 0.05). There are a few possible reasons for this performance gap

between PFA and DKT. First of all, as we have mentioned, we

have to adjust item difficulty values for many problems in order to

avoid overfitting and data leakage, which leads to the lower

predictive power of that feature and lower PFA performance.

Another possible explanation of DKT is winning on KDD data set

is that DKT can better exploit step responses. The structure of

KDD data set made it is difficult to distinguish “main problems”

and “scaffolding problems”, thus PFA is unable to have a more

unified data set for this part of the experiment. That said, the

advantage of DKT shows its power on complicated and realistic

data sets.

6. DISCUSSION AND CONTRIBUTION
Within this paper, we have compared two well-studied knowledge

modeling methods with the emerging Deep Knowledge Tracing

algorithm. We have compared these models in terms of their

power of predicting student performance in 5 different data sets.

Contrary to our expectation, the DKT algorithm did not achieve

overwhelmingly better performance when compared to PFA

model on ASSISTments data sets when they are properly

prepared. DKT appears to perform much better on KDD dataset,

but we believe this is due to PFA model undermined by inaccurate

item difficulty estimation.

A second interesting finding is that when DKT is fed repeated

response sequences derived from the transformation of problems

tagged with multiple skills, the overall performance of DKT is

certainly better than PFA and BKT. Our explanation is that

DKT’s implementation backbone, RNNs, has the power of

Proceedings of the 9th International Conference on Educational Data Mining 549

remembering exact patterns of sequential data and could thus

inflate prediction performance on responses tagged with multiple

skills and repeated per skill. More discussion and special attention

are required when handling multiple skill problems in DKT

algorithm.

Last, but not least, during the investigation of DKT, we

discovered an issue in data quality arising from duplicated

information in a publicly available data set. The duplication

issues (caused by unclear transformational rules and some other

as-of-yet-to-be-ascertained cause) allowed us a natural experiment

to examine the impact of duplications on the robustness of these

algorithms. These discoveries (the data duplications and their

subsequent impact) should serve as a reminder of the importance

of data preprocessing and transformation procedures in the work

of knowledge discovery and data mining. Or, put another way,

while we advance new algorithms and fine tune their parameters,

we should also consider (and, if possible, report on) the

robustness of the algorithms to common data glitches.

7. FUTURE WORK AND CONCLUSION
There are several directions for further research in the area of

DKT modeling. Prior work [2] has shown that the use of context-

dependent RNN language model improved the performance in the

task of the Wall Street Journal speech recognition task. More

features like student features (e.g. prior knowledge, completion

rates, time on learning, etc.), and content features (problem

difficulty, skill hierarchies, etc.) may be available and could be

used. A context-dependent DKT implementation could be created

by adding an extra input vector containing these features.

Another open area for future work is that DKT and other deep

learning algorithms are not restricted to one kind of output or

application. It is also possible that we could apply deep learning

algorithms on other modeling challenges such as wheel spinning,

mastery speed, and affect detection.

In conclusion, our work here focuses on a primitive investigation

of DKT and aims to provide us deeper insight on how DKT

works. Overall, this paper suggests that DKT remains a promising

approach to modeling student knowledge; however, we see that

data which contains problems tagged with multiple skills has to be

dealt carefully in DKT modeling. But, considering that this

implementation of DKT: a) only relied on the sequences of

student responses (just as BKT does) and no other information on

skills and problems and b) performs substantially better than BKT

and as good as PFA, we believe that DKT has great potential to

outperform other methods when it utilizes more features.

8. ACKNOWLEDGEMENTS
We thank multiple current NSF grants (ACI-1440753, DRL-

1252297, DRL-1109483, DRL-1316736, DGE-1535428 & DRL-

1031398), the US Dept. of Ed (IES R305A120125 &

R305C100024 and GAANN), and the ONR.

9. REFERENCES
[1] Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M.,

Guibas, L. J., & Sohl-Dickstein, J. (2015). Deep Knowledge

Tracing. In Advances in Neural Information Processing

Systems (pp. 505-513).

[2] Mikolov, T., & Zweig, G. (2012, July). Context dependent

recurrent neural network language model. In SLT (pp. 234-

239).

[3] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., & Ghemawat, S. (2015). TensorFlow: Large-scale

machine learning on heterogeneous systems. White paper,

Google Research.

[4] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., &

Salakhutdinov, R. (2014). Dropout: A simple way to prevent

neural networks from overfitting. The Journal of Machine

Learning Research, 15(1), 1929-1958.

[5] Open Science Collaboration. (2015). Estimating the

reproducibility of psychological science. Science, 349(6251),

aac4716.

[6] Stamper, J., Niculescu-Mizil, A., Ritter, S., Gordon, G.J., &

Koedinger, K.R. (2010). Algebra I 2005-2006. Challenge

data set from KDD Cup 2010 Educational Data Mining

Challenge. Find it at

http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp

[7] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,

van den Driessche, G., ... & Dieleman, S. (2016). Mastering

the game of Go with deep neural networks and tree search.

Nature, 529(7587), 484-489.

[8] Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009,

June). Curriculum learning. In Proceedings of the 26th

annual international conference on machine learning (pp. 41-

48). ACM.

[9] Pavlik Jr, P. I., Cen, H., & Koedinger, K. R. (2009).

Performance Factors Analysis-A New Alternative to

Knowledge Tracing. Online Submission.

[10] Corbett, A. T., & Anderson, J. R. (1994). Knowledge

tracing: Modeling the acquisition of procedural knowledge.

User modeling and user-adapted interaction, 4(4), 253-278.

[11] Gong, Y., Beck, J. E., & Heffernan, N. T. (2010, June).

Comparing knowledge tracing and performance factor

analysis by using multiple model fitting procedures. In

Intelligent tutoring systems (pp. 35-44). Springer Berlin

Heidelberg.

[12] Heathcote, A., Brown, S., & Mewhort, D. J. K. (2000). The

power law repealed: The case for an exponential law of

practice. Psychonomic bulletin & review, 7(2), 185-207.

[13] Cen, H., Koedinger, K., & Junker, B. (2006, June). Learning

factors analysis–a general method for cognitive model

evaluation and improvement. In Intelligent tutoring systems

(pp. 164-175). Springer Berlin Heidelberg.

[14] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term

memory. Neural computation, 9(8), 1735-1780.

[15] Pardos, Z. A., & Heffernan, N. T. (2011). KT-IDEM:

Introducing item difficulty to the knowledge tracing model.

In User Modeling, Adaption and Personalization (pp. 243-

254). Springer Berlin Heidelberg.

[16] ASSISTments Data. (2015). Retrieved March 07, 2016, from

https://sites.google.com/site/assistmentsdata/home/assistment

-2009-2010-data/skill-builder-data-2009-2010

Proceedings of the 9th International Conference on Educational Data Mining 550

